Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 132(6): 1448-1459, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35482326

RESUMO

High-intensity interval training (HIIT) generates profound metabolic adaptations in skeletal muscle. These responses mirror performance improvements but follow a nonlinear pattern comprised of an initial fast phase followed by a gradual plateau effect. The complete time-dependent molecular sequelae that regulates this plateau effect remains unknown. We hypothesize that the plateau effect during HIIT is restricted to specific pathways with communal upstream transcriptional regulation. To investigate this, 11 healthy men performed nine sessions of HIIT [10 × 4 min of cycling at 91% of maximal heart rate (HRmax)] over a 3-wk period. Before and 3 h after the 1st and 9th exercise bout, skeletal muscle biopsies were obtained, and RNA sequencing was performed. Almost 2,000 genes across 84 pathways were differentially expressed in response to a single HIIT session. The overall transcriptional response to acute exercise was strikingly similar at 3 wk, 83% (n = 1,650) of the genes regulated after the 1st bout of exercise were similarly regulated by the 9th bout, albeit with a smaller effect size, and the response attenuated to on average 70% of the 1st bout. The attenuation differed substantially between pathways and was especially pronounced for glycolysis and cellular adhesion compared to, e.g., MAPK and vascular endothelial growth factor (VEGF)-A signaling. The attenuation was driven by a combination of changes in steady-state expression and specific transcriptional regulation. Given that the exercise intensity was progressively increased, and the attenuation was pathway-specific, we suggest that moderation of muscular adaptation after a period of training stems from targeted regulation rather than a diminished exercise stimulus.NEW & NOTEWORTHY This is the first study to address the phenomena of attenuation of the acute exercise response on a global genomic scale with a focus on underlying regulatory machinery and it is, to the best of our knowledge, the first study conducted in humans was exercise-induced regulation of different canonical pathways and transcription factors are contrasted with regards to attenuation after a period with regular exercise training. These results provide evidence for a pathway-specific regulated augmentation of the response to acute exercise over time that tracks with the successive adaptation on the systemic level.


Assuntos
Treinamento Intervalado de Alta Intensidade , Subunidade alfa do Fator 1 Induzível por Hipóxia , Adaptação Fisiológica/fisiologia , Exercício Físico/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Músculo Esquelético/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Physiol Rep ; 5(5)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28270591

RESUMO

Increased mitochondrial content is a hallmark of exercise-induced skeletal muscle remodeling. For this process, considerable evidence underscores the involvement of transcriptional coactivators in mediating mitochondrial biogenesis. However, our knowledge regarding the role of transcriptional corepressors is lacking. In this study, we assessed the association of the transcriptional corepressor Rb family proteins, Rb and p107, with endurance exercise-induced mitochondrial adaptation in human skeletal muscle. We showed that p107, but not Rb, protein levels decrease by 3 weeks of high-intensity interval training. This is associated with significant inverse association between p107 and exercise-induced improved mitochondrial oxidative phosphorylation. Indeed, p107 showed significant reciprocal correlations with the protein contents of representative markers of mitochondrial electron transport chain complexes. These findings in human skeletal muscle suggest that attenuated transcriptional repression through p107 may be a novel mechanism by which exercise stimulates mitochondrial biogenesis following exercise.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Biogênese de Organelas , Proteína p107 Retinoblastoma-Like/metabolismo , Adulto , Humanos , Masculino , Fosforilação Oxidativa , Resistência Física/fisiologia , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/genética , Adulto Jovem
3.
J Physiol ; 594(11): 3127-40, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26631938

RESUMO

KEY POINTS: Mitochondrial respiratory sensitivity to ADP is thought to influence muscle fitness and is partly regulated by cytosolic-mitochondrial diffusion of ADP or phosphate shuttling via creatine/phosphocreatine (Cr/PCr) through mitochondrial creatine kinase (mtCK). Previous measurements of respiration in vitro with Cr (saturate mtCK) or without (ADP/ATP diffusion) show mixed responses of ADP sensitivity following acute exercise vs. less sensitivity after chronic exercise. In human muscle, modelling in vivo 'exercising' [Cr:PCr] during in vitro assessments revealed novel responses to exercise that differ from detections with or without Cr (±Cr). Acute exercise increased ADP sensitivity when measured without Cr but had no effect ±Cr or with +Cr:PCr, whereas chronic exercise increased sensitivity ±Cr but lowered sensitivity with +Cr:PCr despite increased markers of mitochondrial oxidative capacity. Controlling in vivo conditions during in vitro respiratory assessments reveals responses to exercise that differ from typical ±Cr comparisons and challenges our understanding of how exercise improves metabolic control in human muscle. ABSTRACT: Mitochondrial respiratory control by ADP (Kmapp ) is viewed as a critical regulator of muscle energy homeostasis. However, acute exercise increases, decreases or has no effect on Kmapp in human muscle, whereas chronic exercise surprisingly decreases sensitivity despite greater mitochondrial content. We hypothesized that modelling in vivo mitochondrial creatine kinase (mtCK)-dependent phosphate-shuttling conditions in vitro would reveal increased sensitivity (lower Kmapp ) after acute and chronic exercise. The Kmapp was determined in vitro with 20 mm Cr (+Cr), 0 mm Cr (-Cr) or 'in vivo exercising' 20 mm Cr/2.4 mm PCr (Cr:PCr) on vastus lateralis biopsies sampled from 11 men before, immediately after and 3 h after exercise on the first, fifth and ninth sessions over 3 weeks. Dynamic responses to acute exercise occurred throughout training, whereby the first session did not change Kmapp with in vivo Cr:PCr despite increases in -Cr. The fifth session decreased sensitivity with Cr:PCr or +Cr despite no change in -Cr. Chronic exercise increased sensitivity ±Cr in association with increased electron transport chain content (+33-62% complexes I-V), supporting classic proposals that link increased sensitivity to oxidative capacity. However, in vivo Cr:PCr reveals a perplexing decreased sensitivity, contrasting the increases seen ±Cr. Functional responses occurred without changes in fibre type or proteins regulating mitochondrial-cytosolic energy exchange (mtCK, VDAC and ANT). Despite the dynamic responses seen with ±Cr, modelling in vivo phosphate-shuttling conditions in vitro reveals that ADP sensitivity is unchanged after high-intensity exercise and is decreased after training. These findings challenge our understanding of how exercise regulates skeletal muscle energy homeostasis.


Assuntos
Difosfato de Adenosina/farmacologia , Creatina/metabolismo , Exercício Físico/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Adulto , Creatina Quinase Mitocondrial/metabolismo , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Fatores de Tempo , Adulto Jovem
4.
J Appl Physiol (1985) ; 119(4): 374-84, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26089547

RESUMO

Individuals with high skeletal muscle mitochondrial content have a lower risk to acquire cardiovascular and metabolic disease, obesity, and type II diabetes. Regular endurance training increases mitochondrial density through a complex network of transcriptional regulators that in an accumulated way are affected by each single exercise bout. The aim of the present study was to investigate the effect of a single exercise bout on the levels of PGC-1α and related regulatory factors important for the initial phase of skeletal muscle adaptation. Ten men and ten women were randomized to either an exercise group (60 min cycling at a work load corresponding to 70% of peak oxygen uptake) or a nonexercising control group. Skeletal muscle biopsies were taken before, at 30 min, and at 2, 6, and 24 h after the intervention. Twenty-two mRNA transcripts and five proteins were measured. With exercise, protein levels of PGC-1α-ex1b increased, and this elevation occurred before that of total PGC-1α protein. We also demonstrated the existence and postexercise expression pattern of two LIPIN-1 (LIPIN-1α and LIPIN-1ß) and three NCoR1 (NCoR1-1, NCoR1-2, and NCoR1-3) isoforms in human skeletal muscle. The present study contributes new insights into the initial signaling events following a single bout of exercise and emphasizes PGC-1α-ex1b as the most exercise-responsive PGC-1α isoform.


Assuntos
Exercício Físico , Contração Muscular , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Adaptação Fisiológica , Adulto , Ciclismo , Feminino , Humanos , Masculino , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Resistência Física , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Suécia , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica , Regulação para Cima , Adulto Jovem
5.
Physiol Rep ; 1(6): e00140, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24400142

RESUMO

Recently, a truncated peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) splice variant, PGC-1α4, that originates from the alternative promoter was shown to be induced by resistance exercise and to elicit muscle hypertrophy without coactivation of "classical" PGC-1α targets involved in mitochondrial biogenesis and angiogenesis. In order to test if distinct physiological adaptations are characterized by divergent induction of PGC-1α splice variants, we investigated the expression of truncated and nontruncated PGC-1α splice variants and PGC-1α transcripts originating from the alternative and the proximal promoter, in human skeletal muscle in response to endurance and resistance exercise. Both total PGC-1α and truncated PGC-1α mRNA expression were increased 2 h after endurance (P < 0.01) and resistance exercise (P < 0.01), with greater increases after endurance exercise (P < 0.05). Expression of nontruncated PGC-1α increased significantly in both exercise groups (P < 0.01 for both groups) without any significant differences between the groups. Both endurance and resistance exercise induced truncated as well as nontruncated PGC-1α transcripts from both the alternative and the proximal promoter. Further challenging the hypothesis that induction of distinct PGC-1α splice variants controls exercise adaptation, both nontruncated and truncated PGC-1α transcripts were induced in AICAR-treated human myotubes (P < 0.05). Thus, contrary to our hypothesis, resistance exercise did not specifically induce the truncated forms of PGC-1α. Induction of truncated PGC-1α splice variants does not appear to underlie distinct adaptations to resistance versus endurance exercise. Further studies on the existence of numerous splice variants originating from different promoters are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...